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I. Sumary

The purpose of this contract was to expand the eplcyclic gear dynamics
program to add the option of evaluating the tooth pair dynamics for two
epicyclic gear stages with peripheral components. The option was
developed for either stagde to be a basic planetary, star, single exter-
nal-external mesh, or single external-internal mesh. The two stage
systen includes an input mass and shaft, an cutput mass and shaft, and
a connecting shaft, where the shafts are each modeled with torsional
springs and dampers. The solution procedure was nearly the same as the
procedure previously used for determining tooth pair displacements and
stresses in single stages. The primary differences were that the indi-
vidual gear component displacements were calculated rather than the net
sun-planet or ring-planet displacements. This was necessary in order
to determine the relative displacements between the shafts and the
input and output gears. This generally increases the number of degrees
of freedom to be solved per stage compared to the single stage solu-
tion.

The option to evaluate two stages makes the user’s job more difficult.
Two stages of basic gear system information must be input as well as
the additional component information. In addition, the boundary condi-
tions and associated iteration procedure become more complex. This is
due to both the increased mumber of camponents and to the time for a
complete mesh generally being different for each stage.

A brief investigation into methods of reducing the program’s computa-
tion time was done. The efforts focused on reducing the mmber of
lterations required for boundary condition convergence. It was recom-
mended that the beginning and ending values be weighted differently to
utilize previous iterations more effectively. As over 90% of the ocom-
putation time is in the numerical integration routines, reducing the
mumber of solution integrations would yield a direct, linear reduction
in time.

Execution of the initial test case indicated an instability in the
solution. The tooth pair load pattern is reasonable; however the mag-
nitudes of the tooth pair loads grow to excessive, unrealistic values
as a function of time. This could be due to the initial conditions, a
code error, or same type of mumerical instability. A proocedure has
been recommended for eliminating possibilities and determining where
the problem lies.



II. Introduction

Over the past several years, NASA has developed a gear dynamic analysis
andcanpateroodeforstandm'dammg’hoontact ratio gears. The ana-
lysiswasa:pandedtoimlmintmnl involute tooth forms in addition
to external involute tooth forms, then expanded to include several pla-
nets in epicyclic gear systems. The development oontimed with the
addition of helical and double helical gears, a floating sun gear
option, a natural frequency evaluation, a refined helical gear oom—
pliance routine, and a flexible carrier evaluation.

Theinitialprogrammsdevelopedforasinglespurgearmshandto
operate over a wide range of oontact ratios (up to 4.0) for analysis of
high contact ratio as well as 1low oontact ratio gearing. This single
mesh am was an extension, by Cornell and Westervelt (referemces 1
and 2), of the basic concept developed by Richardson in 1958 (reference
3). The tooth pair compliance and stress sensitivity formulation of the
singlespurgea.rmeshprogramwasusedmtheepicycuogeardynmniw
program, applied to each mesh.

more than one gearing stage are often used for speed reduction, space,
weight, and/or auxiliary units. Thus, this extension allows for model-
mgofperipheraloomponerltsinordertoassessthempactonthegear
tooth stressing. Although the basic oode was oompleted, the cause of
theunexpectedimtabﬂiWintheresultsoouldmtbedeteminedwith
the cost oonstraints of the contract. NASA, therefore, decided to
aooeptde]ivmyoftheoodeanldoamentationrathemthanexterdthe
contract at this time.



The first two tasks of contract NAS3-25821 were to modify the existing
Multi-Mesh Gear Dynamic Analysis Code (GEARDYNMULT in NASA notation,
F178 in Hamilton Standard notation) to include a second stage and per-
ipheral components. These tasks included the technical development and
most of the coding efforts. Another smaller task was to investigate

methods of reducing computation time.

A. Analytical Model

The dynamic response equations for a single gear stage were expanded to
include additional degrees of freedom for an input shaft and attached
input mass, and an output shaft with an output mass. This was accom-
plished by adding two new equations and modifying other equations. Fig-
ure 1 shows a diagram of the two stage system with no details for the
individual gear stages. Figure 2 shows a general schematic for either
epicyclic gear stage. The specifics of the gear tooth dynamics and
program capabilities for each stage are discussed in References 1-7.

For the mumerical model, the input and output shafts each required an
additional second order differential equation to account for the iner-
tias on the input and output shafts.

The equation for the input shaft and attached mass is:

Jyn © + C:Ln(el n - e:l.nl) + km(e - einl) - Tn (1)

where e:Lnl = Y
base radius of the input gear to stage 1

The equation for the ocutput shaft and attached mass is:
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The addition of these equations changes the way the torque is fed into
and out of the individual stages. Previously, there was a constant
input torque term in the sun gear equation and a constant ocutput torque
term in either the ring or carrier equation. The torque is now fed
into the input gear equations by way of shaft rotational displacements
and velocities, which vary with time. The rotational displacements are
transformed into equivalent displacements along the line of action for
each mesh of the input gear. The output gear equations also have the



eq\nvalentshaftdisplmmtandvelocitytemsinplaoeoftheoutput
torque terms.

The new two stage program has the capability of solving for the dynamic
toothloadsinplanetarysystaxs.starsystans,smglemshextenal—
external involute tooth forms, and/or single mesh external-internal
involute systems. Table 1 summarizes the avallable spur gear systems
for two stage dynamic solutions. The two stage program has been

to allow the user to specify the input and output gears. The
single stage solution assumed the systems were speed reduction systems,
but the two stage solution also allows for speed increasing systems.
This option will allow the user to model a back-to-back test rig, which
isgenerallyonereductionsystanardaseoordsmmsystemwmm
increases the speed. For example, a single stage planetary system nor-
ma.uyhasﬂ:esnmgearastheinputardtheplmetmierfortheout—
put. For the two stage solution, the planetary system can have the
mputoompomentaseithmthesungearortheoarriemwiththeoutput
being either the carrier or the sun gear respectively.

The equations for each separate gear oomponent were the same as pre-
viously developed. The basic equation development was dooumented in
References 4-7, and the equations are summarized in Apperdix A for
convenience. The input and output gears for each stage will depend on
the specified system type, see Table 1. Thus, the additiomal terms
needed in the gear equations, due to the shafting, are written in terms
of general input and output gear equations, and are as follows.

input gear equation for stage 1
+Cy (Y:Lnl - Yy J) + ko (Y:Lnl - YiJ'E:‘n) =0 3)
output gear equation for stage 1

+Cya (i’outl - ¥yn) * ¥yp Wougy ™ Ying) = O (4)

input gear equation for stage 2

+ Crp Wing = Yout1) * ¥12 Ving = Youta? = © (5)

output gear equation for stage 2

* Cout Youta ~ Youtsh’ * Eout Voutz ~ Youtsn’ = © (6)

) O4neh
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vhere: Yy = Ry, input gear to stage 1

Youtsh = (Bo, output gear from stage 2



Transformations from shaft rotations to displacements along the appro-

priate]_tneofactiona.reneo&sarytodetermnethetoothpadrdis-
ts along the line of action. This allows the tooth pair dis-
ts and loads to be determined by a procedure similar to the

placemen
single stage procedure.

The mmerical solution of the dynamic equations utilizes IMSL (Interna-
tional Mathematic and Scientific Library) mumerical integration rou-
tines. These routines solve a system of first order differential equa-
tions. Appendix B shows the reduction of the second order equations to
first order equations.

The tooth pair displacements along the line of action are calculated
from the gear component displacements via:

Vop = Vs ~ Yo ~ Y )

For the single stage solution, the generalized coordinates to be solved
by the nmumerical solution were the tooth pair displacements along the
line of action (Ysp ad er)' which minimized the mumber of equations

to be mumerically solved. For the two stage system of equations, the
individual gear component equations must be solved. This was
in order to obtain the input amd output gear displacements (Ys' Yo Yo

Y. pi) for both stages. Therefore the relative displacement terms bet-
ween the shafts and the input or output gears could be calculated.
This means there are more degrees of freedom to be solved for each
stage in the two stage solution . There are (3 + mmber of planets)
degrees of freedom for each stage plus two degrees of freedom for the
input and cutput shafts. 'Ilms,therea.rea.totalof(8+Nl+N2)

seooxdordereqlmtionsaniz(8+N1+N2) first order equations to be
solved simultaneously.

The input and output shaft damping terms are calculated fram a damping
ratio, stiffness, and inertias. The damping coefficients are then cal-
culated using the following formulations.

1/2 €))
Cip =R ¥ [k, / (1/3, )]

Cout -2k [kout/ ( l/J'cmt + l/Joutl

1/2
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+ l/J.'Ln

) ]1/2 (10)



B. Solution Procedure

The solution procedure used to determine the two stage dynamic gear
tooth loads and stresses was very similar to the solution for the
single stage dynamic gear tooth loads and stresses. To minimize the
program modifications, as many of the existing methods and proocedures
as possible were used. Most sections of the program needed same modi-
fication in order to process the additional stage. Many of the
slightly modified routines were used twice, once for each stage, by
sending the necessary information for the relevant stage.

The single stage solution procedure will be reviewed first, because the
two stage solution procedure is essentially an extemsion of the single
stage procedure. The general program proocedure is illustrated via a
flowchart in Figure 3. In brief, the program calculates tooth pair
loads ard solves the differential equations for each of 100 time
steps—a piecewise linear solution. The boundary conditions are deter-
mined via an iterative procedure, which will be explained in more
detail later.

The boundary condition iteration procedure is intemded to lead to a
steady state condition. For the single mesh this is accomplished by
evaluating one full mesh cycle, where a mesh cycle means the time
required for a tooth pair to move the length of the line of actionm.
The mesh cycle time for spur gears is divided into 100 time steps for
the mmmerical time stepping solution, where each increment of time is
treated as linear with respect to the tooth pair stiffnesses. The
bourdary conditions, for sun-planet and ring-planet tooth pair dis-
Placements and velocities, are compared at the begimning and end of the
mesh time cycle. If the displacements and velocities are within a spe-
cified tolerance, the system has reached a steady state. If the condi-
tions are not within the tolerance the initial and final values of the
displacements and velocities are averaged to obtain a new set of ini-
tial conditions, and the procedure is repeated with new initial condi-
tions. This procedure 1s repeated until the boundary conditions are
all within the specified tolerance. The final iterated 100 time step
solution for tooth pair loads and displacements is then post-processed

for tooth stressing.

The boundary conditions for two stages become quite camplex compared to
one stage. The main complexity is due to the two stages having differ-
ent mesh time cycles. This means that steady state is no longer
achleved for one mesh cycle, rather it must be a mutually common time
for both stages, analogous to a common denominator. Figure 4 schemati-
cally shows two examples. The first one shows a case where the two
stages have time oycles that can readlly achieve a steady state, i.e.
one stage has a time cycle exactly 2 times the other stage’s time
cycle. The other example shows a case where 47 cycles would have to be
evaluated for steady state, which would consume large quantities of
computer time (and a code change to increase the size of an array).
However, it is thought that this case could be approximated by evaluat-
ing five cycles. It follows that there are systems in which there is
no true steady state.



Once the boundary conditlons have converged, the tooth pair steady
state displacements are post-processed for stressing through the 100
time steps. If any tooth palr errors have been requested for evalua-
tion, the program contimies to evaluate 10 time cycles to simulate the
user input tooth pair errors going through a mesh for either one or two
stages. The method used to process the tooth palr errors starts with
the converged boundary conditions fram the no tooth errors solution as
the initial conditions for the numerical solution with errors. The pro-
gram thus simulates a transient response (for a duration of ten mesh
cycles) as the various tooth palr errors come into mesh. The dynamic
effects of the tooth pair errors have generally been abserved to dampen
out after evaluation of 3-5 mesh cycles.

For the two stage expansion, it was desirable to work with the current
procedure to maintain commonality. This implied that the 100 time
steps, corresponding to a mesh cycle time, needed to be maintained, as
this furdamental approach is used throughout the program. The first
question was which stage’'s time cycle should be used to correspord to
the 100 time steps embedded in the program. A smaller time step for
the mmerical solution would tend to make for a more stable mumerical
solution, while the larger time step would reduce the computation time.
The smaller time step was chosen for stability reasons.

The other question was how to handle the two different mesh times in
order to achieve a "steady state" in a practioal amount of ocomputation
time. It was decided that the program could be set up to evaluate the
boundary conditions after a user specified mumber of time cycles was
evaluated. However, the fact that there could be cases with no true
steady state made it desirable to try and approximate a steady state
arﬂttmevaluateatransientrwpomseusingtheapprmdmtedbound&ry
conditions as initial conditions. It is possible that the instability
could be related to these approximate steady state boundary conditions.

In order to verify the approximate steady state boundary condition ocon-
cept, the original single mesh program was used to determine if a small
change in the mesh time cycle would significantly affect the converged
boundary condition values. Several cases were run with slightly dif-
ferent mumbers of teeth (which determines the mesh time). The iterated
results showed minimal variation in the converged values for displace-
ment and velocity. Thus, this implied that it would be possible to
evaluate ‘approximate two stage bourdary conditions’ at a time when the
two stages were close to a steady state. The program will use the ini-
tial conditions obtained fram the approximate steady state solution and
contime to evaluate 10 additional oycles for a transient response.

The transient response utilizes the same procedure used to evaluate
tooth pair errors in the single stage code. The solution procedure,
with 100 time steps per cycle, is essentially the same except there is
no boundary condition averaging. It should be noted that the two stage
solution compares the tooth pair displacements and velocities for con-
vergence, not the individual gear components. The initial and final
conditions for the individual components are each averaged and that
average is used for the initial conditions for the next iteration.



The subroutines written for the two stage solution generally follow
similar notation to that used in previous codes, both in subroutine
names and variahle names. The code was written assuming a maximum of 10
planets per stage, spur gears only, and no floating sun or flexible
carrier option.

Several new routines and some slightly modified routines were written
in order to accommodate the additional information required for two
different stages. The mmber of planets per stage is limited to

10, which should be more than sufficient for any real system. This is
areductioninthemzmberofp]anetsallowedinthesuglestage
solution, but simplifies the code changes by utilizing the existing
arrays and the corresponding dimensions. The arrays now contaln stage
1 information in the first 10 elements and stage 2 information in the
second 10 elements, for the same total nmumber of array elements as the

previous solution.

The procedures and calculations of the new progran are essentially the
same as the single stage program. The primary changes come through
nearly every section or subroutine being executed for stage 1 and then
for stage 2. Some of the basic parameters, such as mesh time cycle,
additional logic in order to implement the option of
“reversed" systems (where the systems are speed increasers rather than
reducers). Most of the minor modifications were made to accommodate
the additional parameters of the second stage, axd did not change any
basic concepts. Because of the option of multiple cycles being evalu-
ated for bourdary condition convergenoe, it was also neoessary to add a
durmy time parameter to obtain proper tooth pair contact. Without the
durmy time parameter, the stage with the shorter mesh time cycle lost
aJltoothpa;LroontaotdurmgtheseoommOtdmesteps. Thus, to
obtain proper contact evaluation, a dummy time was reset to zero at the
begimning of each mesh time cycle for the stage with the smaller mesh

time cycle.

ThemputrcutinesweremodifiedtomeetNASAprograangstamams.
The additional stage of information necessary for the two stage solu-
tion required modification of the code to set up the input variables.
'Ibdsportionoftheoodewasweviouslyinthepmeprooessingrouﬁne;
however, the preprocessing routine (READ2) is a very large routine axd
does not meet the 150 executable line requirement. Thus, the section
of the code for setting input variables to meaningful notatlon was
modified to be separate subroutines, acoepting input for either one or
two stages of information, and the remainder of READ2 remained
unchanged exoept for additional arguments. Three subroutines were
necessary to convert a section of the old routine into acceptable
length routines and a fourth was necessary to control which stage was

being preprocessed.



C. Methods of Reducing Computation Time

Part of Task I was to recommend a method for possible future develop-
ment work in "alternate methods for expanding the model to more than
two stages (such as a superposition dynamic model)." The stated reason
for such a recommendation was the potential for extensive ocamputational

times.

meapproachtothistaskwastoempmsizethereduotioninoonputer
time required by the progranm. In analyzing the present CPU usage of
the program, it was determined that over 90 percent of the computa-
tional time was in the mumerical integration routine. The basic alter-
natives to reducing program solution time were as follows.

a. Reduce the number of time steps used through the
mesh for a direct, linear reduction in time.

b. A more advanced solver routine for an unknown time
reduction.

c. Reduce the number of iterations required for
boundary condition convergence for a direct linear
reduction in time.

Ttem a. was thought to be practical for single mesh cases only, sinoe
only in these cases could the timing of events through the mesh tine
cycle, be accurately estimated. Item b. was not thoroughly explored,
but was felt to hold some promise. Item ¢. was the main focus of this
study, and could be applicable to any level of the oode, i.e., single
mesh, multiple mesh, and multiple steges.

In order to investigate better methods of convergence, the flexible
carrier test case given in Reference 4 was used. This case was ini-
tially solved by calculating input conditions as specified in Appendix
A of Reference 4, and many boundary condition iterations, which use
significant CPU time.

Figure 5 is a plot of the ending values of the sun gear displacement
and velocity versus the mumber of iterations through a gear mesh
period. It shows that the method of selecting new values is creating a
cyclic behavior that will take many iterations to converge. The mean
value of the plotted functions match the converged value of the solu-
tion. The behavior of the planet and ring gear results was similar.

In order to evaluate the convergence difficulties, the code was tempo-
rarily changed to weigh the beginning and ending values differently in
order to obtain a higher welghting to previous iterations. The revised
code, shown in Figure 6, has not been incorporated in the new program,
but was used for this investigation only. The convergence could be
tailored for a particular case by changing coefficients of the dis-

ts from the previous iteration and the current iteration (e.g.
SXSO and XSO respectively), and similarly for the velocities (SXS1 and
XS1). The sum of the coefficients must be equal to unity. The results
of using 0.7 and 0.3 for the displacement, and 0.5 and 0.5 for the
velocity are shown in Figures 7 and 8.



In order to reduce the camputation time for a dynamic solution, it is
recamended that this method be added to the ocode, with the weighting
coefficients as input parameters rather than fixed values in the code.
It is further recommended that code be written to automate the plots as
shown in Figures 7 and 8. The resulting ocode should substantially
enhance the user'’s understanding and the convergence of the boundary
coitions.

D. Discussion of Instability and Test Cases

Task Ic was to evaluate the two stage model and determine the interac—
tion between two stages and the effects of input and output shafting

and attached masses. This was not fully accomplished due to the ini-
tial test case showing an instability in the results. However, same

general comments will be made regarding the apparent instability and

other observations from a variety of test cases.

The first test case that was used approximated the CH-58 dropped tooth
planetary design being tested at NASA lLewis. A dropped tooth design
"drops” a tooth from each of the planets so that the mumber of teeth on
a planet divided by the mmber of planets is not an integer number.
The purpose of the design is to reduce dynamioc tooth loading. The
actual planetary system could not be modeled with the program, because
the dropped tooth design leads to different pressure angles for the
sun-planet and ring-planet meshes. The program assumes equal pressure
angles for the sun-planet and ring-planet mesh, although an equivalent
buttress tooth form might be a feasihle modeling method. Figure Ga
shows the input test case for a single stage and Figure @b shows the
corresponding output summary. This case had assumed the pressure angle
of the sun-planet mesh for both the sun-planet and ring-planet meshes
and used the program’s geometry preprocessor.

The next step was to evaluate two stages, simulating the back-to-back
test rig at NASA. An example input data set for two stages is shown in
Figure 10. The first stage was modeled as a planetary, with the sun

gear as the input gear, and the second stage was a "reversed planetary"
with the carrier as the input. This case was used for initial verifi-
cation of the code interaction and debugging purposes. The geometry for
the two stages was the same, with the primary difference between the

stages being the input torque and rpm. The different torques led to

slightly different tooth pair stiffnesses, as the torque level influen-
ces the Hertzian component of the stiffness function, see reference 2.
The difference in rpm oould affect the dynamic load levels, particu-

larly if near a resonant speed.

Table 3 summarizes the test cases run with the two stage program and
the resulting component displacements. The initial test case, case 1,
was designed to uncouple stage 1 from stage 2. Thus, the

shaft stiffness was very low. The input and output shaft stiffnesses
were also low, because same preliminary test case results indicated

large displacements for very stiff input and output shafts. The solu-
tion seemed to be very sensitive to the values of the shaft stiff-
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nesses, as indicated by comparison of case 4 and 5 (stage 1). For a
decrease 1n input shaft stiffness by a factor of ten, the magnitudes of
the planetary component displacements along the line of action
decreased by orders of magnitude.

Same of the dynamic load results for the initial test case have been
plotted in Figure 11. These results illustrate a typical tooth pair
meshing pattern of engagement and disengagement of the teeth. The
meshing pattern also repeats for subsequent cycles, as would be
expected. What is umusual about these test results, is the substantial
increase in the magnitude of the loads as time progresses. This
increasing magnitude is also illustrated in Figure 12, which shows the
maximum stress in a cycle vs. the transient cycle mmmber. It is evi-
dent fram this figure that there is some type of instability in the
solution. It is interesting that the Hertz stress increases in a
nearly linear fashion, while the maximum bending stress is a higher
order function. This is logical in that a nonlinear increase in loads
would correspord to a nonlinear increase in berding stress. It is
recammended that the system equations be evaluated for stability.

The cases summarized in Table 3 show the effect of varying the input
and output masses and shaft stiffnesses. Only one bourdary condition
iteration was performed, which was sufficdent to aobserve the change in
the component displacements due to the modified parameter(s). The
affect of varying the masses on the input or output shaft was inversely
proportional to the input or output shaft displacements respectively.
For example, the input mass for case 2 is 10 times the input mass for
case 1 and the input shaft rotational displacement decreased by the
same factor of 10. The other stage 1 component displacements, sun,
carrier, and planets, also showed decreases of nearly the same factor.
This indicates that the shaft displacements are dominating the individ-
ual input and output gear equations, and the tooth pair dynamics are
therefore overshadowed.

Case 3 is the same as Case 1 except the input and output masses have
been reversed. The input and output shaft displacements were corre-
spondingly interchanged. As would be expected, the gear displacements
for the two stages were interchanged also, but with some variation due
to the change in torque and rpm of the two stages.

In Case 4, a very stiff shaft connecting the two stages was investi-
gated. This case verified that the displacement of the output gear
from Stage 1 (planet carrier) would equal the displacement of the input
gear to Stage 2 (planet carrier) for a rigid comnection.

Case 5 was a check case to verify that the input mass and shaft could
be isclated fram Stage 1 by using zero torsional shaft stiffness.

using a low connecting shaft stiffness, this case also verified that
the two stages could be isolated from each other. By having zero tor-
sional input shaft stiffness, there is no torque transmitted to the
input gear of Stage 1 axd therefore approximately zero displacements in
Stage 1. The second stage displacements were nearly the same as Case
4, which verified the stages were isolated from each other.

11



Caseewasnearlymesameascase4.buttheoonneoting‘stnftstiff—
ness was a lower and more realistic value. All of the camponent dis-

ts were slightly larger for the softer shaft. There was also a
smandifferemeinthemgmudesoftheoutpmgearfrmsmgelam
the input gear to Stage 1. This is logical, because as the oconnecting
sbaftstiffwssdemeases.ﬂmerehtivedisplaoemtofthetwoerﬂs
will increase.

Case 7 increased the torsionmal stiffness of the input shaft by several
orders of magnitude. The resulting displacements shown in Table 4
inlioatetheddsplaoanentsdsoinm'easedbyordersofmgnittﬁefor
the first stage components. The second stage camponent displacements
also increased substantially, but not as much as the first stage.

Therea.reseveralpossibilitiesforthesmmoeoftbeinstabinw.
Figure 13 illustrates a proocedure for eliminating possibilities and
tracking down the problem. The recommended procedure would start with
a very simple “two stage" system, as shown schematiocally in Figure 14.
This simple system, effectively a gear train, with constant tooth pair
stiffnesses could be evaluated using a small program, separate from the
gear program. The system should have a 1:1 gear ratio for simplicity
anitoensureasteadysta.teoanbeachievedforboundaryoondition
convergence. If the simple system shows an unstable behavior, it will
be known that there is a problem with the basic problem formulation.
'Iha.tistheleastlikelysmmoeoftheproblem,mtitisthelogioal
starting point. The model complexity can then be increased by adding
in the variable tooth pair stiffness. If the independent solution
yieldsreasomblerwults,thesamesystemoanbenmintheMImul—
tiple mesh gear program. If the results are inconsistent, it would
indicate an error in the two stage multiple mesh oode.

Tf the results are consistent for the 1:1 gear ratio cases, the pro-
blemismsthkelyrelatedtotheiniwoonutimsaxd/ortheboun—
dary condition iteration scheme. This would indicate a better method
for estimating the initial conditions and for determining oonvergence
should be devised. It should be noted that this is not minor task. In
general, each stage plus an input or output shaft will have 2 times (4
+ mmber of planets) for boundary conditions to be determined. Not
only is it difficult to obtain initial estimates for the tooth dis-
placements and velocities for each component of the epicyclic stage,
but it is even more difficult to determine a general method of combin-
ing the two stages.

Another test case was tried to determine if the instability was system
dependant. The second case chosen was the Stoeckicht 2K-H planetary
from Reference 5. The two stage test case was set up as two planetary
reduction stages with identical geometry and basic gear parameters.
meonlydifferenoebetweenthwetwostageswmﬂdbetheto:queam
the rpm. This case exhibited similar instabilities, with tooth loads
increasing substantially with time.

12



Iv. Concluding Remarks

An option to evaluate two gear stages, with a commecting shaft and
input and output shafts with attached masses, has been added to the
epicyclic gear tooth dynamic analysis program. There were extensive
code modifications to accommodate two stages of: geometry preprooess-
ing, tooth pair load calculations, and dynamic equations. The new code
utilizes the same general methods and procedures as were previously
used for the single stage solution ard includes additional degrees of
freedom for the attached masses. The two stage option also allows for
speed increasing systems as well as speed reduction systems.

It is recommerded that code changes be incorporated for a more rabust
boundary condition iteration scheme. The proposed code changes can
significantly reduce the mmber of iterations required for a converged
steady state solution, and therefore reduce the computation time for a
dynamic solution.

The program’s plotting capabilities should be modified to use more uni-
versal plotting routines. The plotting capahilities should also be
expanded to process the large amount of output from a two stage solu-
tion. In addition, plotting capabilities for the boundary conditions
should be added to enhance the user's understanding of the boundary
condition convergence process.

The initial test case indicated an instability in the dynamic solution,
where the gear tooth displacements contimually inorease with time, bey-
oxd any reasonable values. Several variations on shaft stiffnesses,
attached masses and shaft damping were evaluated to investigate the
problem. The tooth pair loads with respect to time indicated the tooth
pair contact patterns were reasonable, in that the basic pattern was
repeated with time, although the magnitudes contimued to increase.
Further evaluation of the problem could not be made because of fund
limd tations.
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Apperdix A. Epicyclic Gear System Equations for Either Stage

The following second order equations of motion describe the
individual gear components in an epicyclic system. They are
written in terms of the displacements along the lines of action.
The development of the basic equations is documented primarily in
Reference 1 ard 6.

Sun gear equation:

N N

ny +Xd_ v +fL_ =1 7/ (A.1)
S7S 4o1 SPiTSP; 4y SP;  ing Rbs

Planet gear equation:

-d +d_ V. -L_+I =0 A.2
mPiYPi Spj.YSPi I’Piyrpi Py TP; 4-2)

Ring gear equation:

N N

moY -Td_ Yy _ -fL_ = 1 ./ (A.3)
S TP;*TPy 4 Py out Rbr

Carrier equation:
N N N N

Y,-Ld_¥. -Zd_ v -FL_-%TL - 1 s (A.4)
1=1 TP17TPy 4o SPi7SP; 5 TPy 503 SRy out Rbc

NOTE: For the two stage solution, the constant torque terms indi-
cated above go to zero. The "torque” is input to the appropriate
gear equations via terms for relative displacement with respect
to a shaft.

The tooth pair load terms are determined from the following equa-
tions.

¢ ] (A.8)

L = an ((vo,, - e - xR 2 om
- SPji SPyi

B
SP1 g51 TSPy TSPy SPy1 - SPyy

m
2 2
= Yy, -e_ -X 8 ) o, ] (A.6)
L TPyy TRy o TPy gy Yrpy,

15



Appendix B: First Order Differential Egquations

The rumerioal integration routines solve for a system of first
order equations. The transformation of the secord order differ-
ential equations to first order equations 1is shown below. The
subscripted rumbers on the derivatives correspord to elements in
the array (X1) in the program.

Input shaft equation reduction:

Let , .
Xy = 9j 1 (B.1)
}7:4 = Xy = é’ : (B.2)
Then | . .
Xg = [ Ty, - Cin(%, - 6,90 - ky (%, - 8,171/94n (B.3)
'4 = Xy (B.4)
Output shaft equation reduction:
Let | .
X5 = eoutsh (B.5)
g = Xg = éoutsh (8.6)
Then. .
ks = [ Tout ~ Cout®s ~ Couta’ ~ Fout®s ~ %outz’VJout BT
:?:6 = Xg (B.8)

The remaining equations will vary depending on the specific sys-
tem type, see table of system types in the main report text. For
simplicity, the following first order equation derivations will
assume both stage 1 and stage 2 are planetary systems. Thus, the
generalized input and output gear equations in equations 3 - &
are now specified, where the input gear is the sun gear and the
output gear is the planet carrier for both stages.

Sun gear equation for stage 1:

Let

X = Y5 = O Brg (8.9)

5 = Xy =Yg (B.10)

x.
I
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. N1 N1 . .
X, =-[Zd_ ¥ +L_ +C,_(x,-R_X,)
1 l_lspi spi ISpi in*"2 Rbs4
O - Fegig) 1/ Mg
X X
Carrier equation for stage 1:
let
X = ¥
kg = % = ¥
Then
_ N1 N1 P N1 N1
=[zd_v +Zd + L + TL
7 i=1 TPi7TPy 4 Spi SP;i  i=1 SPi  i-1 TPy
= Cip(Xg — X)) ~ kyp(xg — xy0)] / mg
Xg = %o

Ring gear equation for stage 1:

Xg Y
=Xy = y = 0.0
Note: ring gear is fixed for a planetary system.

Planet gear equations for stage 1:

Let

X6 = Ypi for i = 1 to N1

xi+N1+16 = x:i.+16 for 1 =1 to N1
Then )

X F=3 —

1416 = [ dgp YSPi %rp, Yrp,* Lep,

Xi4N1+16 ~ *i+18
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Sun gear equation for stage 2:

let
%11 " Ygp
g = X1 T ¥g2
Then
. N2 . N2 ) ,
X, =-[%Zd Y + T L + Cy (X, — X5)
11 oy spRy Yepa, TyTyCspe; T V12712 7 7B
+ k(X = Xg) ] / Mgy
X2 " *1
Carrier equation for stage <:
Let
%13 = Yoz = Oout2 Roez
X4 = %13 " Y2
Then
_ N2 _ N2 . N2 N2
X.. = [ Zd Y +ZLd + L + L
13 ') TPRTTPRy 4y SPRyTSPRy 41 8Py 4oy TP

- CoutProgis ~ ¥14) ~ EoutPRpog¥e ~ ¥14) 1/ Mg

X =X

14 13

Ring gear equation for stage 2:

x15 = 0.0
X16 = X35 = ¥pp = 0.0
Note:

ring gear is fixed for a planetary system.
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Planet gear equations for stage 2:
let

. ‘%

xi+2N1+16 = Xpi for i =1 to N2

X LoN14N2+16 ~ Xi+2N1+18

*i.on1e16 ~ | Yspe, Yepa, ” “rpe, Yrpe, " Vsp2,

Xi boN1+N2+16 ~ Ti+2N1+16
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Apperdix C. Nomenclature

C,,, = danping coefficient for the input shaft (in-1lbs-s/rad)

Cout

Cig

= damping coefficient for the output shaft (in-1bs-s/rad)

= damping coefficient for the output shaft (in-lbs-s/rad)

]

i

]

e
]

]
]

[}

(40)
il

tooth pair damping (1b-s/in)

tooth spacing error (in)

rotational inertia attached to input shaft (in-1lbs-s?/rad)

rotational inertia attached to output shaft (in-lbs-s®/rad)
torsional stiffness of the input shaft (in-1lb/rad)
torsional stiffness of the output shaft (in-lb/rad)

torsional stiffness of the shaft comnecting the two stages

tooth pair loads for planet mesh i (1bs)

rotational (equivalent) mass (lb-s*/in)
number of planets
base radius (in)

displacement along the line of action (in)

cam modification, ring-planet mesh
cam modification, sun-planet mesh
ring-planet tooth pair spring rates

sun-planet tooth pair spring rates

rotational displacement (rad)

20



¥ = damping ratio
input torque (in-1b)

Ty =

Tout = Output torque (in-1b) |

@rp = identity function for ring-planet tooth pair contact

ji

¢sp = identity function for sun-planet tooth pair contact
< Jl

X = 0 or 1 deperding on whether the tooth contact is on
Sp

the profile modification cam or not

ript
insh = input ghaft
outsh = gutput ghaft
inl = input gear to stage 1

in2 = Input gear to stage 2

outl = gutput shaft from stage 1
out2 = output shaft from stage 2

in = Regarding input
ocut = Regarding cutput shaft
S = sun gear

pi = planet gear i

H
I

ring gear

carrier

(@]
]

sun-planet mesh

g

ring-planet mesh

H
el
I

12 = shaft connecting stage 1 to stage 2
1 = stage 1
2 = stage 2
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Table 1: Wmmmnwm

Solution
Systen Spur Gear
u Type Input Gear Qutput Gear
1 planetary system sun gear planet carrier
-1 planetary system planet carrier sun gear
2 star system sun gear ring gear
-2 star systenm ring gear sun gear
4 single external- sun gear planet gear
external* mesh
-4 single external- planet gear sun gear
external* mesh
5 single external- planet gear ring gear
internal** mesh
-5 single external- ring gear planet gear

internal** mesh

*+ External-external mesh means a pinion and a gear, both with
external involute tooth forms.

** External-internal mesh means a pinion and a gear, with the
pinion having an external involute tooth form and the gear
having an internal tooth form.

22



Table 2:

System Type:

Speed Range:
Torgque Range:
Number of Planets:

Stage 1 1input:
Stage 2 input:
Stage 1 output:

Planetary

Up to 1620 rpm (sun gear)
Up to 12,450 in-1b (sun gear)

3

Sun gear
Planet Carrier
Planet Carrier

OH-58 Planetary Characteristics

Stage 2 output: Sun gear

Peripheral Input Output Connecting
Characteristic Shaft Shaft Shaft
Inertia (in-1b-s%) 2.5 1.0 -
Stiffness (in-1b/rad)  1.0x10° 1.8x107 3.9x10
Planetary Gear Sun Planet Ring
Characteristic Gear Gears Gear Carrier
Number of Teeth 27 35 99 -
Diametral Pitch® 8.8571 8.8571 9.14286 -
Pressure Angle* 24.86 24.6 20.19 -

(degrees)
Root Radius (4in) 1.39 1.802 5.594 -
Tooth Tip Radius (in) 1.6585 2.067 5.35 -
Face Width (in) 1.375 1.20 1.00 -
Inertia (in-1b-s?) 0.026 0.016 0.0 0.20

Note*

at the sun-planet and ring-planet meshes.

23

The variation in diametral pitch and pressure angle cannot be
accurately modeled, as the program assumes equal pressure angles



CASE NUMBER

Table 3:

ATTACHED INERTIAS

SHAFT STIFFNESSES

(in-1bs-s®) (in-1b/rad)
INPUT OUTPUT INPUT |OUTPUT |CONNECTING
1 10 15 10 10 10
2 100 10 10 10 10
3 15 10 10 10 10
4 10 10 10 10 1x10°
5 10 10 0 10 10
6 10 10 10 10 1x10°
7 10 10 1x108 | 10 10

24




Table 4: Results of Two Stage Test Case Paranetric Variations

DISPLACEMENTS, IN.

CASE STAGE INPUT OUTPUT SUN CARRIER PLANET
NUMBER SHAFE SHAFE G:EAR4 5 4
x10° x10 x10 x10 x10

1 1 .8017 ~ .6941 .7872 . 2067

2 - .B345 .4274 .503 .1292

2 1 .08018 - .06955 .07985 .02071

2 - .8018 .6408 .7528 .193%7

3 1 .5345 - . 463 .526 L1379

2 - .8018 .6408 .7534 .193%7

4 1 .8003 - .6899 .7629 .2051

2 - .8003 .639 .7629 .1928

5 1 .8004 - .616E-4 .1095E-2 .1974E-4

2 - .8004 .638 .7466 .1925

6 1 .801%7 - .6935 N ardrd .2065

2 - .8017 .6414 .764 .1938

7 1 19.889 - 2755.6 9612 1247.9

2 - 13.364 £9.4 231.8 26.1

NOTE: These displacements are at the end of the first boundary
condition iteration.
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Figure 1: Two Stage System Diagram
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Planet n Ring gear

Planet carrier

Planet i

Planeti+1
Or:

Figure 2: Dynamic Model for Epicyclic Gear Stage
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Read input data
for 1 or 2 stages
and store as needed

K1

Preprocess each stage
for geometry & other
program variables

v

Call appropriate routine
for calculating dynamic
equation constants for

either 1 or 2 stages

v

Call routine to calculate
mesh time cycle(s)

¥

Boundary condition
iteration loop, repeat
until convergence

Loop for 100
time steps

Call routine to
calculate tooth
pair loads for
either 1 or 2
stages

v

Call routine to
solve the dynamic
equations for
current time step

v A

(continued)

Figure 3: General Program Flowchart
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(continued)

'

Determine if boundary
conditions have converged

.

For single stage solution
only: Determine maximum
tooth pair loads & proceed
with speed survey if
requested

Process the final loads
with converged boundary
conditions for stresses

Are
there any tooth
pair errors
?

stage system
?

Post process 100 time
Steps for stresses

Y —

End

Yes

= X
Call subroutine to
retrieve error array

l

(continued)

Figure 3: General Program Flowchart (continued)
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(continued)

Loop for 10 time cyclf§>>" l

[;;op for time step

—

Call routine to
calculate tooth
pair loads with
errors

—

—

Call routine to
solve the dynamic
equations for cur-
rent time step

'

Post process 100 time
steps for stresses

l

Shift error array to simulate
a transient type response

(by shifting which teeth with
errors are meshing)

A

End

Figure 3: General Program Flowchart (continued)
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!
!
!

},. TCl tage 1
[|_4i TC2 + TC2 =‘{ Stage 2
]L
— : >
0.0 0.025 0.05
time, sec.
TC1/TC2 = 0.05/0.025 = 2.0
Number of Boundary Condition Cycles
for Steady State = 2
TCl = Time Cycle for stage 1
TC2 = Time Cycle for stage 2
}4————’1302 =![< TCZ————O‘ tage 2
| )
1 1
( !
: 1
*TCI*LTCI0#TCl*kTCl4ﬁ—é—ﬁ*——-———~4———n-———h: Stage 1
| .
[
|
]

!
|
| } ]
f ! ]

Y

s i ]
T ¥ l T ]
Cc.0 0.01124 0.0284

time, sec.

TC2/TCl = 0.0264/.00562 = 4.7

10 x TC2 = 0.264 sec. Number of Boundary Condition

47 x TC1 = 0.264 sec. Cycles for Steady State = 47

Figure 4: Two Stage Time Cycle/Boundary Condition Diagram
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Sun Gear Displacement x 103

Sun Gear Velocity, in./sec.

e/ e S \(rwiF converged - - =ton

2 4 6 8 10

Figure 5:

ERA _converged - - L

i ; " valu L

i i 4 - -
. e

Iteration Nﬁmber

Sun Gear Displacement and Velocity Boundary
Conditions vs. Number of Iterations
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621

Original Code

X = .5%(XS0 + SXS0)
SXS0 = Xs0

XSO = ¥

X = ,B¥(XS1 + SXS1)
SXS1 = Xs1

XS1 = ¥

DO 622 1P=1,N

X = .B5X(APO(IP) + SXPO(IP))
SKPO(IP) = Xpo(IpP)

XPO(IP) = ¥

X = .5%{XCO(IP) + SXCO(IP))
SXCO(IP) = XCoO(Ip)

Xco(Ip) = ¥

X = BX(XRO(IP) + SXRO(IP))
SXRO(IP) = XRO(IP)

XRO(IP) = X

X = .BXIXPL(IP) + SXP1(IP))
SXP1(IP) = Xp1l(XP)

XP1(IP) = X

X = B®[XCL1(IP) + SXC1(IP))
SXCI{IP) = XCl(IP)

XC1(IP) = X

X = .GH(XRI(IP) + SXR1(IP))
SXRICIP) = XR1(Ip)

622 XR1(IP) = ¥

Figure 6:

Weighting
oomwwHOHmuﬁm

Code Revisions to Wei
Condition It

Recommended

Code Revisions

621 X
Displacement

X
Velocity

= 5%(XS0 + SXS0)

SXsSo
XS0 =

= [ 70ksxs0 + [.3ak xso
X

= ,B5¥[(XS1 + SXsS1)

_ SXS).5 [5OKSXSY + [Bopxs1
X

XS1 =

DO 622 IP=1,M
= J5%(XPO(IP) + SXPO(IP))

X

SXPO(IP) =

- 70%SXPO(IP) + ,30%XPO(IP)-

XPO(IP) = X
= J5%(XCOLIP) + SXCO(IP))

X

SXCo(1P) =

- 70%SXCO(IP) + .30xXCO(IP)

KCO(IP) = X
= JBX(XRO(IP) + SXRO(IP))

X

SXRO(IP) =

+70%SXRO(IP) + .30%XNO(IP)

XRO(IP) = ¥

X = BR(XP1(IP) + SXP1(IP))
SXPLIIP) = 50XSXPLLIP) + ,50%XP1(IP)
XPL(IP) = ¥ <

X = JB5¥(XCL{IP) + SXC1(IP))

SXCIIIP) = .BO%SXC1(IP) + LBOXXC1(XIP)
XC1(IP) = X _

K = BH(XRYI(IP) + SXRI(IP))

SXRLIIP) = .BOXSXRL(IP) + ,50%XRL(IP)

622 XRL(IP) = X

ght Previous Bound
erations

ary
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SINGLE STAGE CHECK CASE, OH-58

OHMNULNIMWN -

]
[

1.
2.
6.

Figure Sa:

1.
8.8571
27.
1.375
5000.
.026
.016
.01

1.

24.6
35. 99.
1.2 1.
500. 500
2000 .00
20.

.016

Single Stage OH-58 Test Case Input
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LE

INPUT DATA

NO.TEETH - SUN 27.0000
NO.TEETH - PLANEY 35,0000
PRESSURE ANGLE (DEGREES) DRIVE SIDE 24,6000
DIAMETRAL PITCH 8.8571
TOOTH TIP RADIUS TOL, (IMNCH) 0.0020
EDGE BREAK OM TOPLAND (INCH) 0.0100
HACHINED BACKLASH TOL. (INCH) 0.0020
ROOT RADIVS TOL. (INCH) 0.0050
FACE WIDTH - SUN (INCH) 1.3750
FACE WIDTH -~ PLANET (INCH) 1.2000
YOUNGS MOD.xE-6 - SUN (LB/SQ.INCH) 30.0000
YOUNGS MOL.%E-6 - PLANET (LB/SQ.INCH) 30.0000
POISSOHS RATIO - SUN 0.3000
POISSONS RATIO - PLANET 0.3000
SURFACE ROUGHHESS-MAX (AA) 25.0000
OIL INLET TEMPERATURE (DEG.F) 180.0000
INITIAL RPH OF RANGE 500.0000
FINAL RPHM OF RANGE 500.0000
NUHBER OF INTERVALS 1.0000
TORQUE INPUT (IN-LBS) 5000.0000
TOTAL INV.PROFILE HODIFICATION,ENGAGE (INCH) 0.0000
TOTAL INV.PROFILE HODIFICATION,DISENG (INCH}) 0.0000
INV.PROFILE MOD.LOCATION-% OF SOE 0.0000
INV.PROFILE MOD.LOCATION-Y OF sob 0.0000
INV.PROFILE HOD.TOTAL TOLERANCE 0.0000
+C.D.TOL. (QUT OF MESH) (INCH) 0.0000
-C.D.TOL. (INTO MESH) (INCH) 0.0000
CONTACT RATIO INPUT 0.0000
HERTZ CONSTANT FOR COMPLIANCE 209862.

CENTER DISTANCE,THEO. (INCH) 3.5000
CENTER DISTANCE,MAX. (INCH) 3.5000
CENTER DISTANCE,MIN, (INCH) 3.5000
CIRCULAR PITCH (INCH) 0.3547
CIRCULAR BASE PITCH (INCH) 0.3225
HAX.OPERATING PRESS. ANGLE (DEG) DRIVE 26.6000
HIN.OPERATING PRESS. ANGLE (DEG) DRIVE 24.6000
NOMINAL CONTACT RATIO AT C.D.~THEQ, 1.4867
HINIMUM CONTACT RATIO AT C.D.-MAX. 1.34626
MATERIAL CONSTANT 0.0528
CODE FOR TYPE OF OIL 0.0000

Figure 9b:

NUMBER OF TEETH

PITCH DIAMETER (INCH)
BASE CIRCLE DIA. DRIVE SIDE (INCH)
TOOTH TIP DIAMETER,MAX. (INCIt)
TOOTH TIP DIAMETER,MIN. (INCH)
EFFECTIVE TOOTH TIP DIA (INCH)
ROOT DIAMETER,MAX. (INCH)
ROOT DIAMETER,MIN. (INCH)
TRUE INV.FORHM DIA. (INCH)
TOPLAMD WIDTH,HIN. (INCH)
ROOT FILLET RADIUS,MIN. (IMCH)
HACHINE BACKLASH,HAX. (INCH)
MACHINE BACKLASH,MIN. (INCH)
CIRCULAR TOOTH THICKHESS (INCH)
HACH.CIRC.TOOTH THKNS.MAX. (INCH)

MACH.CIRC.TOOTH THKNS.MIN. (INCH)
TIP/ROOT CLEAR.MIN AT CD MIN. (INCH)
ROLL ANGLE AT TOOTH TIP DIA. (DEG)

ROLL ANGLE (DEG)
AT ADD.INV.MODIFICATION DIA. (INCH)
ROLL ANGLE AT PITCH DIA. (DEG)

ROLL ANGLE (DEG)
AT DED.INV.MODIFICATION DIA. (INCH)
ROLL ANGLE AT TIFD (DEG)
INSPECTION WIRE/BALL DIA. (INCH)
HAX.MEASUREMENT OVER 2 WIRE/BALL (INCH)
HIN.HEASUREMENT OVER 2 HIRE/BALL (INCH)

EFFECTIVE WIDTH AT TOOTH TIP
EFFECTIVE WIDTH AT START OF FILLET

RADIUS TO BASE OF FILLET INPUT (INCH)
OQUTSIDE RADIUS INPUT (INCH)

FILLET RADIUS INPUT (INCH)

DAMPING RATIO INPUT

Single Stage OH-58 Output Summary

for Preprocessed Geometry

SUN

27.0000
3.0484
2.7717
3.2862
3.2822
3.2622
2.8089
2.7989
2.8867
0.0586
0.0489
0.0025
0.0005
0.1828
0.1823
0.1803
0.0128

36.4943

26.2319
3.0484

26.2319

26.2319
3.0484

16.6714

0.1950
3.32466
3.3207
1.3750
1.3750

6.0000
0.0000
¢6.0000
0.0000

PLANET

35.0000
3.9516
3.5930
4.16549
4.1614
4.14l1q
3.6945
3.6845
3.7721
0.0636
0.0508
0.0025
0.0005
0.1719
0.1714
0.1694
0.0097

33.6071

26.2319
3.9516

26.2319

26.2319
3.9516

18.315¢4

0.2100
4.2561
4.2521
1.2000
1.2000

0.0000
0.0000
0.0000
0.0000
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PLANETARY GEAR, SIMILAR TO

1 1. 1.
2 2. 8.8571
3 6. 7.
5 9. 1.375
G 16. 5000.
5 28. .026
5 33. .016
2 150. .80
1 651. 0.
5 810. 1.
% 815. .13
1 827. 5.
0 8l19. 0.0000
0 823. .0000000
0 830. .000000
0 840. .00000000
0 850. 00.00000
0 860. 0.000000
0 5é6l. .0000000
0 bs8l. 00.00000
0 571. .0000000
0 591. 0.000000
1 1001. 1.
2 1002. 8.8571
3 1006. 27.
5 1009. 1.375
4 1014. 23333.
5 1028. .026
5 1033. .0l6
2 1150. .80
0-1.

THE OH-58 BACK-TO-BACK TEST RIG SETUP

24.6
35. 99.
1.2 1. 3.0 1.
500. 500. 1.0
.2500 .25 .0160 .016
5.
1.E1 1.E1 1.E1 0.14
.15 10. 15.
.000000 " 00.00000 .000000
00.0000 .00000000 00.000
.000000 .00000

.00000000 .00000000
00.00000 00.00000
0.000000 0.000000

26.6
35. 99.
1.2 1. 3.0 -1
107. 107. 1.0
.2500 .25 .0160 .016
5.

Figure 10: Two Stage OH-58 Input Data Set
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Dynamic Tooth ILoad
Static Tooth Load

~third transient

4 cycle
.0 | B
’second transient|
cycle
l
first transient
cycle l
|
0 |
' |
|
.5‘ . ,
’.
o | |
/
|
J |
.5 4
| l
|
0 - / ‘
|
l
.5 4
l
|
| —
0.0 0.005686 0.01132 0.01698

Time, sec.

Figure 1lla: Dynamic Loads for OH-58 First Stage
Sun-Planet Mesh
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Dynamic Tooth Load
Static Tooth Load

I N
| R
first transientlsecond transientlthird transient
cycle | cycle l cycle

L

0.0 0.00566 0.01132 0.01698

Time, secC.

Figure 11b: Dynamic Loads for OH-58 First Stage
Ring-Planet Mesh
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Bending Stress -
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@ Sun-Planet - -
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QH-58 Test Case

- soft springs for shafts

" -large attached masses on
input and output shafts

0o
2 4 6 8 10
Transient Cycle Number
Figure 12: Maximum Stress vs. Transient Cycle Number
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Evaluate a Simplified Model

Constant tooth pair stiffness
Each stage consisting of a single
external-external mesh

1 : 1 gear ratio

Use a program separate from

the full gear program

Does not work

¥Yorks OK

Add Variable tooth pair

stiffness

Vorks OK

Y

Run same system in full
program

gear

Works OK

Try system with non-integer gear
ratio (single ext-ext mesh)

Equation -or- Numerical
formulation Solver, DGEAR,
error inadequate

Does not work

Evaluate Model Parameters i.e.

masses, stiffnesses, etc. for

sensitivity

Does not work

Code error

Does not work

1 Works OK

Lock at planetary stages

-

Evaluate boundary
9condition iter-
ation scheme

Works OK

y

( Problem solved ;)

Figure 13:
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Does not work

Procedure to Locate Source of Instability
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Simple Two Stage System Schematic
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